20. Photochemische Reaktionen

117. Mitteilung [1]

Zur Photochemie von 5,6-Epoxydienen¹) und konjugierten 5,6-Epoxytrienen²)

von Alex Peter Alder, Hans Richard Wolf und Oskar Jeger

Organisch-chemisches Laboratorium der Eidgenössischen Technischen Hochschule, CH-8092 Zürich

(22. X. 80)

Photochemistry of 5,6-Epoxydienes and of Conjugated 5,6-Epoxytrienes

Summary

On singulet excitation ($\lambda = 254$ nm) the 5,6-epoxydiene 6 and the conjugated 5,6-epoxytrienes 7 and 8 exclusively give products arising from cleavage of the C, C-bond of the oxirane (cf. $6 \rightarrow 9$, 10, 11; $7 \rightarrow (E)$ -15, 16, 17; $8 \rightarrow 18$ (A+B), 19 (A+B), 20, 21). The dihydrofuran compounds 11 and (E/Z)-15 are formed by cyclization of a ketonium-ylide a and d, respectively. Photolysis of a gives the carbene b which yields the cyclopropene 9, whereas d forms photochemically the carbenes f and g which yield the methano compounds 16 and 17. The isomeric cyclopropene derivatives 20 and 21 are products of the intermediates h and i, respectively, which are formed by photolysis of the ylide e. The cyclopropene 21 isomerizes by intramolecular cycloadditions to 18 (A+B) and 19 (A+B). – On triplet excitation ($\lambda \ge 280$ nm; acetone) 6 undergoes cleavage of the C(5), O-bond and isomerizes to 12 and 14. However, 7 is converted by cleavage of the C, C-bond of the oxirane to yield 15. On treatment with BF₃O(C₂H₅)₂ 6 gives 14, whereas 7 yields 22, and 8 forms 23 and 24.

1. Einleitung. – Zur Abklärung der Parameter, die die Photochemie a, β -ungesättigter γ, δ -Epoxyketone bestimmen, tragen wesentlich die Ergebnisse der ${}^{1}\pi, \pi^{*}$ - bzw. der ${}^{1}n, \pi^{*}$ -Anregung der γ, δ -Epoxyenone **1**-4 (s. Schema 1) bei (vgl. Diskussion in [4-8]). Jedoch konnte bei diesen Versuchen keine Auskunft über die Multiplizität der am Reaktionsgeschehen beteiligten Anregungszustände gewonnen werden. Aufschluss zu dieser Frage gibt aber offenbar die Photochemie der den Epoxyenonen entsprechenden 5,6-Epoxydiene. So wurde im Falle des Jonylidenepoxids 5 gefunden, dass dieses z.T. die gleichen Typen von Photoreaktionen wie das Jononepoxid 2 eingeht, und es wurde bei 5 nachgewiesen, dass die Singulettanregung ausschliesslich Spaltung der C,C-Oxiranbindung, die

¹) Teil III; bzgl. Teil II s. [2].

²) Vgl. vorläufige Mitt. [3].

Triplettanregung aber ausschliesslich Spaltung der C(5), O-Bindung auslöst [2]. In der Hoffnung, auf analoge Weise auch für die Diskussion der Photochemie der Epoxyenone 1, 3 und 4 entsprechende Hinweise zu erhalten, wurde in der vorliegenden Arbeit das Verhalten der Epoxide 6-8 unter ${}^{1}\pi$, π^{*} - bzw. ${}^{3}\pi$, π^{*} -Anregung untersucht (zur Herstellung von 6-8 vgl. exper. Teil).

2. Photolysen. – 2.1. ${}^{1}\pi$, π^* -Anregung von 6 ($\lambda = 254$ nm). Die Bestrahlung einer . ca. 0,05 m Lösung von 6 in Pentan ergab bei 70proz. Umsatz die Produkte³) 9 (26%), 10 (29%) und 11 (20%; s. Schema 1).

2.2. ${}^{3}\pi$, π^{*} -Anregung von 6 ($\lambda \ge 280$ nm). Die Photolyse einer ca. 0,05 M Lösung von 6 in Aceton ergab bei ca. 90proz. Umsatz von 6 die Produkte³)⁴) (E)-12 (15%), (Z)-12 (40%), 13 (29%) und 14 (12%; s. Schema 1).

2.3. ${}^{1}\pi$, π^* -Anregung von 7 ($\lambda = 254$ nm). Die Bestrahlung einer ca. 0,05 m Lösung von 7 in Pentan ergab bei ca. 80proz. Umsatz die Produkte³)⁴) (E)-15 (35%), 16 (5%) und 17 (40%) (s. Schema 2).

2.4. ${}^{3}\pi, \pi^{*}$ -Anregung von 7 ($\lambda \ge 280$ nm). Die Photolyse einer ca. 0,05 m Lösung von 7 in Aceton ergab bei ca. 90proz. Umsatz von 7 die Produkte³)⁴) (E)-15 (36%) und (Z)-15 (45%).

2.5. ${}^{1}\pi, \pi^{*}$ -Anregung von 8 ($\lambda = 245$ nm). Die Ergebnisse der Bestrahlung ca. 0,05 m Lösungen von 8 bei + 50, + 10 und - 10° in Pentan bzw. in Acetonitril sind in der Tabelle zusammengefasst und die Produkte im Schema 3 dargestellt.

Diese Versuche ergänzend wurde eine ca. 0,46 M Lösung von 8 in Acetonitril- d_3 bei – 30° unter ¹H-NMR.-spektroskopischer Kontrolle bestrahlt. Bei 30proz. Um-

³) Die Ausbeuten sind auf die Menge des umgesetzten Reaktants bezogen und wurden anhand der Auswaage säulenchromatographischer Fraktionen sowie mittels ¹H-NMR.- und GC.-Analyse bestimmt.

⁴) Die ¹H-NMR.-spektroskopische Kontrolle des Verlaufes der Photolyse des Reaktanten im entsprechenden deuterierten Lösungsmittel zeigte übereinstimmende Produktbildung.

satz lagen **19 A** zu *ca.* 17%, **19 B** zu *ca.* 15% sowie ein Produkt zu *ca.* 34% vor, dem die Struktur **21** zugeschrieben werden kann (vgl. Diskussion in Kap.5). Die Lösung wurde 10 Min. auf 25° erwärmt und hierauf nochmals bei -30° ¹H-NMR.-spektroskopisch untersucht, wobei sich zeigte, dass sich **21** vollständig zu **19 B** isomerisiert hatte.

Tabelle. Produktverteilung der bei verschiedenen Temperaturen erfolgten ${}^{l}\pi, \pi^*$ -Anregung von 8

Lösungsmittel	Temp. [°C]	Produktanteile ^a) [%]				
		18A	18B	19A	19B	20
Acetonitril	+ 50	13	16	26	34	7
Pentan	+ 10	19	20	26	15	6
Acetonitril	- 10	26	31	20	10	4

^a) Die Anteile wurden durch die ¹H-NMR.-spektroskopische Analyse (Messtemperatur ca. + 30°) der Photolyse-Rohprodukte (Integration über den Signalbereich der Olefin- und Cyclopropan-H-Atome) ermittelt und anhand der Ergebnisse³) der Aufarbeitung der Rohprodukte (s. exper. Teil) überprüft. Zudem wurde die Produktbildung mittels ¹H-NMR.-spektroskopischer Kontrolle der Photolyse einer 0,45 M Lösung von 8 in Acetonitril-d₃ (Versuchstemp. ca. + 40°) verfolgt; bei ca. 60proz. Umsatz von 8 hatten sich die Produkte 18A, 19A und 19B (Hauptprodukt) gebildet. 2.6. ${}^{3}\pi, \pi^{*}$ -Anregung von 8. Photolysen von 8 ($\lambda \ge 280$ nm) in Aceton bzw. Aceton- d_{6} oder in Benzol unter Zusatz von Acetophenon ($\lambda \ge 347$ nm) führten lediglich zu unspezifischer Produktbildung.

2.7. ${}^{1}\pi, \pi^*$ -Anregung von (E/Z)-15 ($\lambda = 254$ nm). Die Bestrahlung einer ca. 0,05 M Lösung von (E)-15 in Acetonitril-d₃ führte zur Bildung eines komplexen Gemisches unbekannter Produkte⁵). Wurde (Z)-15 unter den gleichen Bedingungen bestrahlt, so fiel neben 10% (E)-15 ebenfalls ein komplexes Gemisch unbekannter Produkte⁵) an.

2.8. ${}^{3}\pi, \pi^{*}$ -Anregung von (E/Z)-15. Bei der Triplettsensibilisierung von (E)-15 bzw. von (Z)-15 (0,05 M Lösungen in Aceton- d_{6} ; $\lambda \ge 280$ nm) bildete sich ein photostationäres (1:1,3)-Gemisch der (E/Z)-Isomeren aus.

3. Isomerisierung von 6-8 mit Bortrifluorid-diäthylätherat. Die Epoxide 6-8 wurden in Benzol unter quantitativem Umsatz mit Bortrifluorid-diäthylätherat zur Reaktion gebracht. Hierbei isomerisierte sich 6 zu 14 (65%) (s. Schema 1), 7 zu 22 (47%) und 8 zu 23 (50%) und 24 (15%) (s. Schema 4).

4. Struktur der Produkte. - Cyclopropenderivate 9, 20 und 21 (s. Schemata 1 und 3). Die Ableitung der Struktur 9 erfolgte aus der Interpretation der Spektraldaten. So zeigt die Verbindung 9 im IR.-Spektrum bei 1775 cm⁻¹ eine Bande, die für Cyclopropenderivate mit monosubstituierter Doppelbindung charakteristisch ist (vgl. Diskussion in [2] [4]). Mit dem Strukturvorschlag 9 in Übereinstimmung erscheinen die Cyclopropen-H-Atome als d bei 2,14 ppm (J=1,5 Hz) und $d \times d$ bei 6,52 ppm ($J_1=J_2=1,5$ Hz). Weiterhin deuten Lage und Multiplizität der ¹³C-NMR.-Signale (bzgl. Zuordnung s. exper. Teil) eindeutig auf eine Konstitution 9.

Das Cyclopropenderivat 20 weist im IR.- und im ¹H-NMR.-Spektrum bzgl. der Cyclopropengruppe Spektraldaten auf, die denjenigen von 9 entsprechen (s. exper. Teil und vgl. vorangehende Diskussion). Das Vorliegen eines Enon-Chromophors ist im UV.-Spektrum von 20 durch das Ab-

⁵⁾ Die Produktanalyse erfordert den Einsatz grösserer Reaktantmengen, die bei dieser Untersuchung nicht zur Verfügung standen; weiterführende Versuche sind z.Z. im Gange.

sorptionsmaximum bei 208 nm ($\epsilon = 16600$), im IR.-Spektrum durch Banden bei 1680 und 1630 cm⁻¹ sowie durch den Befund belegt, dass im ¹H-NMR.-Spektrum die endständigen H-Atome der Enon-Doppelbindung als *s* bei 5,66 und 5,86 ppm erscheinen.

Das zu 20 isomere Cyclopropenderivat 21 erwies sich als thermolabil und konnte nur im Reaktionsgemisch bei -30° in Lösung (CD₃CN) ¹H-NMR.-spektroskopisch nachgewiesen werden (Anteil von 21 ca. 34%). Im Unterschied zu 9 und 20 weist 21 offenbar eine disubstituierte Cyclopropendoppelbindung auf. Das bei 0,66 ppm erscheinende s wird in Analogie zum strukturanalogen Cyclopropenderivat 26 [5] (s. Schema 4) den isochronen H-Atomen des Cyclopropenringes zugeschrieben. Für die H-Atome der (E)-konfigurierten Enon-Gruppe wird ein AB-System der Kopplungskonstanten J = 16 Hz ($\delta_A = 6,62, \delta_B = 7,25$ ppm) beobachtet. Der Strukturvorschlag 21 stützt sich schliesslich auch auf den Befund, dass sich das Produkt bei Erwärmen auf Raumtemperatur unter intramolekularer [4+2]-Cycloaddition vollständig zum tricyclischen Isomer 19B umwandelt.

Enoläther 10 (s. Schema 1). Der Enoläther erfährt in wässerigem Dioxan bei der Zugabe von Oxalsäure quantitativ Hydrolyse zum Isopropylketon 25 (s. Schema 4), dessen Struktur sich zweifelsfrei aus der Interpretation der Spektraldaten (s. exper. Teil) ergibt. In Ergänzung zu diesem Befund legen die spektralanalytischen Daten von 10 den getroffenen Strukturvorschlag fest. So treten im IR.-Spektrum Enolätherbanden bei 1675 und 1665 cm⁻¹ auf, und es werden zudem in diesem Bereich für die Methylidengruppen Banden bei 1650 und 1625 cm⁻¹ beobachtet. Im ¹H-NMR.-Spektrum zeigt die allylständige CH₂-Gruppe als *d*-artiges *m* bei 2,60 ppm (J=7,5 Hz) Kopplung mit dem benachbarten olefinischen H-Atom, das als $d \times t$ bei 4,90 ppm auftritt ($J_1=7,5$ Hz, $J_2=1,0$ Hz infolge weitreichender Kopplung mit (CH₃)₂CH). Zur Diskussion der übrigen strukturbelegenden NMR.-Daten sei auf die Zuordnungen im exper. Teil verwiesen.

Dihydrofurane 11, 14 und 24 (s. Schemata 1 und 4). Die instabile Verbindung 11 konnte nur gaschromatographisch in kleinen Mengen isoliert werden. Der Strukturvorschlag 11 stützt sich daher lediglich auf die Interpretation der spektralanalytischen Daten und deren Vergleich mit den Daten des isomeren Dihydrofurans 14. Im IR.-Spektrum von 11 werden bei 1660 cm⁻¹ eine Enolätherbande, und bei 3080, 1645 und 895 cm⁻¹ die Banden einer Methylidengruppe beobachtet. Weiterhin verweisen die ¹H-NMR.-Signale auf das Vorliegen von zwei Methylgruppen, einer Isopropyl- und einer lsopropenylgruppe (s. exper. Teil). Zudem erscheinen das zweifach allylständige H-Atom als m bei 3,03 ppm und das Olefin-H-Atom des Dihydrofuransystems als $d \times d$ -artiges m bei 4,25 ppm ($J_1 = 1,5$, $J_2 = 1$ Hz), bei dem gemäss Einstrahlungsexperiment eine weitreichende Kopplung mit (CH₃)₂CH vorliegt. Das MS. weist als Primärfragmente aus dem Molekular-Ion intensive Abspaltungen zu m/z 165 $(M^+ - 15)$, 139 $(M^+ - 41)$, 137 $(M^+ - 43)$ auf, die der Eliminierung einer Methylgruppe, der Isopropylbzw. der Isopropenylgruppe entsprechen. Analog zum Dihydrofuranderivat 11 wird auch beim Isomer 14 für das olefinische H-Atom des Dihydrofuransystems eine weitreichende Kopplung mit $(CH_3)_2CH$ gefunden. Wird diese durch Einstrahlung gelöscht, so tritt das olefinische H-Atom als d bei 5.22 ppm (J=1.5 Hz) auf. Dem zweifach allylischen und zum Dihydrofuran-O-Atom geminalen H-Atom kann als Signal bei erwartungsgemäss tiefem Feld von 4,93 ppm ein leicht verbreitertes s ($\omega_{1/2}$ = 3 Hz) zugeteilt werden. Im ¹³C-NMR.-Spektrum ist das Vorliegen der tertiären C-Atome des Dihydrofuransystems durch d bei 86,9 und 119,5 ppm belegt. Die übrigen Strukturelemente der Verbindung 14 ergeben sich eindeutig aus den weiteren NMR.- sowie aus den IR.- und MS.-Daten (vgl. exper. Teil). Die Struktur 14 wird schliesslich auch durch den Befund gestützt, dass in Analogie zur Lewissäurekatalysierten Isomerisierung des Epoxydiens 5 zum Dihydrofuran 27 (s. Schemata 1 und 4) die Umsetzung von 6 mit Bortrifluorid-diäthylätherat 14 ergibt (vgl. Diskussion des Reaktionsablaufes von **5**→**27** [2]).

Die zur Ableitung der Strukturen 14 und 27 [2] angeführten Argumente lassen sich auf die Diskussion des Strukturvorschlages 24 übertragen, wobei das zusätzlich auftretende Strukturelement einer exocyclischen Doppelbindung u.a. anhand der NMR.-Daten belegt ist (s. exper. Teil).

Homokonjugierte Ketone (E/Z)-12 und 13. Die Verbindung 12 fiel im (E/Z)-lsomerengemisch an, aus dem nur (Z)-12 isomerenrein abgetrennt werden konnte. Erwartungsgemäss zeigen die Konfigurationsisomere im MS. das gleiche Fragmentierungsverhalten. Der Vergleich der ¹H-NMR.-Daten von (E)-12 mit denjenigen des (Z)-lsomers stützt die im exper. Teil getroffenen Strukturzuordnungen. Im UV.-Spektrum zeigt (Z)-12 für den Dienchromophor ein Absorptionsmaximum bei 221 nm $(\varepsilon = 5000)$ und für die homokonjugierte Ketogruppe Maxima bei 281, 288 und 305 nm $(\varepsilon = 255, 260$ und 150). Im weiteren legen die NMR.-Daten die Ableitung der Struktur (Z)-12 fest (s. exper. Teil). Aus der Interpretation der spektralanalytischen Daten von 13 geht der angegebene Strukturvorschlag zwanglos hervor (vgl. insbesondere Zuordnung der NMR.-Daten im exper. Teil), jedoch ist hierbei die Konfiguration an der trisubstituierten Doppelbindung unbestimmt. Das Methylketon zeigt im MS. aus dem Molekular-Ion ausgeprägt Acetylabspaltung $(M^+ - 43)$, im IR.-Spektrum eine Carbonylschwingungsbande bei 1715 cm⁻¹ und im UV.-Spektrum ein Absorptionsmaximum bei 290 nm $(\varepsilon = 230)$. Für das zweifach allylische H-Atom wird als ¹H-NMR.-Signal ein d (3,81 ppm) mit J = 9,5 Hz beobachtet, wobei dessen Kopplungspartner, das H-Atom der trisubstituierten Doppelbindung, als $d \times d \times qa$ bei 5,39 ppm $(J_1 = 9,5, J_2 = J_3 = 1$ Hz) erscheint. Die Struktur 13 ergibt sich schliesslich in Verbindung mit diesen Daten eindeutig aus der Zuordnung der Signale des ¹³C-NMR.-Spektrums (s. exper. Teil).

Enoläther (E/Z)-15 (s. Schema 2). Die Strukturen (E/Z)-15 wurden aufgrund der Spektraldaten und aus deren Vergleich mit denjenigen der Enone (E/Z)-28 (s. Schema 4) [6] [7] abgeleitet. So weist (E)-15 ein UV.-Absorptionsmaximum bei 230 nm ($\varepsilon = 24600$) auf und zeigt im ¹H-NMR.-Spektrum für die *trans*-Olefin-H-Atome ein *AB*-System mit J = 16 Hz; hingegen ist bei (Z)-15 das UV.-Absoprtionsmaximum kurzwellig nach 222 nm ($\varepsilon = 10700$) verschoben, und im ¹H-NMR.-Spektrum erscheinen die *cis*-Olefin-H-Atome als *AB*-System mit J = 13 Hz. Im IR.-Spektrum tritt bei beiden Isomeren eine Enolätherschwingungsbande bei 1665 cm⁻¹ auf. Das MS. zeigt für (E)- und (Z)-15 erwartungsgemäss intensive Isobutenabspaltung (Fragmentierung des Cyclobutans) $M^+ - 56$ zum Basispik m/z 148.

Cyclopropylketon **16** (s. *Schema 2*). Beim oxydativen Abbau mit Ozon ergab **16** den Carbaldehyd **29** (46%; s. *Schema 4*) [7]. Die Ableitung der *trans*-Konfiguration des Diensystems von **16** folgt aus dem Betrag der Kopplungskonstanten (J = 16 Hz) des entsprechenden AB-Systems ($\delta_A = 5,50, \delta_B = 6,03$ ppm).

Bicyclo [5.1.0] octenonderivat 17 (s. Schema 2). Die Lage der IR.-Carbonylschwingungsbande bei 1700 cm⁻¹ wie auch der Extinktionswert von $\varepsilon = 700$ des UV.-Absorptionsmaximums bei 261 nm zeigen, dass 17 ein konjugiertes Keton darstellt. Den ¹³C-NMR.-Daten zufolge enthält die Verbindung vier CH₃-Gruppen, eine sp³- und eine sp²-CH₂-Gruppe, zwei tertiäre sp³- bzw. sp²-C-Atome, zwei quaternäre sp³-C-Atome sowie ein quaternäres Olefin-C-Atom und das C-Atom einer Carbonylgruppe (vgl. Zuordnungen im exper. Teil). Im ¹H-NMR.-Spektrum bilden die Cyclopropyl-H-Atome ein AB-System mit J = 6 Hz ($\delta_A = 1.54$, $\delta_B = 1.92$ ppm), wobei der B-Teil zusätzlich aufgespalten ist durch weitreichende Kopplung (J = 2,5 Hz) mit dem zum Cyclopropylsystem a-ständigen H-Atom der endocyclischen Doppelbindung. Des weiteren kann der allylischen CH₂-Gruppe ein AB-System ($\delta_A = 2.31$, $\delta_B = 2.59$ ppm, J = 13 Hz) zugeordnet werden, dessen B-Teil im Unterschied zum A-Teil nicht überdeckt ist und den Nachweis einer zusätzlichen Aufspaltung von J = 5 Hz infolge Kopplung mit dem vicinalen Olefin-H-Atom zulässt.

Tricyclo [4.3.0.06.8] nonanonderivate 18 (A+B) (s. Schema 3). Die Struktur der Verbindungen 18 ergibt sich aus der Interpretation der spektralanalytischen Daten und dem Vergleich mit dem strukturanalogen, mittels Röntgenstrukturanalyse identifizierten Ester 30 [5] (s. Schema 5). So zeigt das ¹H-NMR.-Spektrum von 18A für die Cyclopropan-H-Atome ein AB-System bei 0,63 ppm ($\delta_A = 0,32$, $\delta_B = 0,95$ ppm, $J_1 = 4,5$ Hz), wobei der A-Teil infolge weitreichender Kopplung mit dem allylständigen H-Atom des Vierringsystems zusätzlich aufgespalten ist ($J_2 = 1,5$ Hz). Im Falle des Esters 30 liegt die entsprechende Signalgruppe bei 0,72 ppm ($J_1 = 5$ Hz, $J_2 = 1,5$ Hz). Die übrigen ¹H-NMR.-Daten wie auch die Lage und Multiplizität der ¹³C-NMR.-Signale (s. exper. Teil und vgl. Daten von 30 [5]) stützen eindeutig die Struktur 18. Die instabile⁶) Verbindung 18B erweist sich anhand seiner spektralnalytischen Daten als Stereoisomer von 18A. So zeigt 18B u.a. im MS. gleiches Fragmentierungsverhalten. Analog zu 18A wird im ¹H-NMR.-Spektrum von 18B für die H-Atome des Dreiringes bei

⁶) Bei der Aufarbeitung des Photolyse-Rohproduktes lagerte sich **18B** zu einem Isomer $C_{15}H_{22}O$ unbekannter Struktur um (s. exper. Teil).

hohem Feld ein *AB*-System mit J=4 Hz ($\delta_A = 0,23$, $\delta_B = 0,77$ ppm) beobachtet. Mit der Strukturableitung **18B** in Übereinstimmung treten die Cyclobutan-H-Atome bei 2,49 bzw. 3,19 ppm als *d* mit jeweils J=4,5 Hz auf.

Tricyclo [5.4.0.0^{1,3}]undecenonederivate 19 (A + B) (s. Schema 3). Die Konstitution von 19 (A + B) wurde aus dem Vergleich der Spektraldaten mit denjenigen des strukturverwandten Enoläthers 31 [8] (s. Schema 4) ermittelt. Es sei hier lediglich vermerkt, dass in den ¹H-NMR.-Spektren für die Cyclopropyl-H-Atome AB-Systeme mit jeweils J=4 Hz bei ähnlich hohem Feld vorgefunden werden (19A: $\delta_A = -0.03$, $\delta_B = 0.66$ ppm; 19B: $\delta_A = -0.22$, $\delta_B = 0.54$ ppm) und dass die Stereoisomeren bei der ¹³C-NMR.-Analyse analoge Signalmuster und im MS. gleiches Fragmentierungsverhalten zeigen.

Enone 22 und 23 (s. Schema 4). Die Interpretation der NMR.-Daten (s. exper. Teil) sowie der übrigen Spektraldaten legen eindeutig die getroffenen Strukturzuordnungen fest (vgl. auch die Strukturdaten von 32 [2]).

5. Diskussion. – Die Ergebnisse der Photolysen der offenkettigen Modellverbindung 6 (s. Schema 1) bestätigen den in der Reihe der Jonylidenepoxide erhaltenen Befund [2], dass Substrate, welche den Chromophor eines konjugierten 5,6-Epoxydiens aufweisen, bei der 1π , π^* -Anregung selektiv Spaltung der C,C-Oxiranbindung, unter 3π , π^* -Anregung dagegen selektiv Spaltung der C(5), O-Bindung erfahren⁷). So stellen die Verbindungen 9-11 Produkte dar, deren Bildung unter Spaltung der C, C-Epoxidbindung von 6 erfolgte. Bei der Umwandlung $6 \rightarrow 9$ bzw. $6 \rightarrow 11$ tritt intermediär eine Zwischenstufe a (s. Schema 6) auf, die sich zum Dihydrofuran 11 cyclisiert oder ein Vinylcarben b ausbildet⁸), welches sich zum Cyclopropenderivat 9 umwandelt. Es ist nicht auszuschliessen, dass die

⁷) Fiel bei der ¹π, π*-Anregung des Jonylidenepoxids 5 das isomere Cyclopropenderivat 33 (49%) (s. Schema 5) an, so wurden bei der Triplettsensibilisierung von 5 die homokonjugierten Ketodiene (E)-32 (24%), (Z)-32 (28%; s. Schema 4) sowie die isomeren Dihydrofuranderivate 27 (22%) und 34 (7%; s. Schema 4) erhalten [2] [4].

⁸) Zur Photofragmentierung von Ketonium-yliden s. [9].

Zwischenstufe a unter 1,6-Wasserstoffübertragung zur Bildung des offenkettigen Enoläthers 10 beiträgt. Doch muss auch die Möglichkeit in Betracht gezogen werden, dass 10 das Produkt einer lichtinduzierten homosigmatropischen 1,5-Wasserstoffwanderung in 6 darstellt.

Bei der Triplettanregung ($\lambda \ge 280$ nm; Aceton) bildet 6 unter Spaltung der C(5), O-Bindung die Zwischenstufe c aus, welche (E/Z)-12 (1,2-Methylgruppenwanderung) sowie das Dihydrofuranderivat 14 (Anlagerung des O-Atoms an C(3)) ergibt⁹). Die Diskussion der Photolyse-Ergebnisse von 6 abschliessend sei noch erwähnt, dass die Bildung des zweifach homokonjugierten Ketons 13 (s. Schema 1) als lichtinduzierte 1,3-Acylverschiebung in (E/Z)-12 aufgefasst werden kann¹⁰).

⁹⁾ Isomerisierungen vom gleichen Typus liegen bei den Umwandlungen $5 \rightarrow (E/Z)$ -32 und $5 \rightarrow 27$, 34 vor; s. Fussnote 7).

¹⁰) Vgl. Photoisomerisierung $35 \rightarrow 36$ (s. Schema 5) [10].

Die Interpretation der Ergebnisse der Photolysen der konjugierten 5,6-Epoxytriene 7 und 8 mit Licht von $\lambda = 254$ nm (${}^{1}\pi, \pi^{*}$ -Anregung; s. Schemata 2 und 3) geht davon aus, dass bei beiden Verbindungen nur die Photospaltung der C, C-Oxiranbindung auftritt, welche zur Ausbildung einer Zwischenstufe d bzw. e (s. Schema 7) führt, die vermutlich die Eigenschaften eines Ketonium-ylids aufweist. Die Photoprimärprodukte d und e unterscheiden sich im thermischen Verhalten. So cyclisiert sich d unter Ringverengung zum bicyclischen Dihydrofuranderivat (E)-15¹¹), wogegen der hierzu analoge Prozess bei e sterisch unterbunden ist. Beide Zwischenstufen reagieren jedoch photochemisch unter Spaltung der C(5), O- bzw. der C (6), O-Bindung und Ausbildung alternativer Vinylcarbene ($d \rightarrow f$, g bzw. $e \rightarrow h, i$), welche sich auf unterschiedliche Weise cyclisieren. So bilden die Carbenzwischenstufen f und g unter intramolekularer Addition an die Enondoppelbindung isomere Cyclopropanderivate aus ($f \rightarrow 16^{12}$) und $g \rightarrow 17^{13}$); s. Schema 7), wogegen sich die Vinylcarbene h und i zum Cyclopropenderivat (20 bzw. 21) cyclisieren.

Die Cyclopropenverbindung 21, die im Unterschied zum Isomer 20 bei Raumtemperatur nicht gefasst werden konnte¹⁴), ergibt unter lichtinduzierter intramolekularer [2+2]-Cycloaddition die tricyclischen Isomere 18 (A+B) und isomerisiert sich unter thermisch induzierter intramolekularer [4+2]-Cycloaddition zu den Verbindungen 19 (A+B). Erwartungsgemäss verlagert sich das Bildungsverhältnis 18 (A+B)/19 (A+B) bei den Photolysen von 8 mit zunehmender Temperatur zugunsten der [4+2]-Cycloadditionsprodukte 19 (A+B). Im Unterschied zur ${}^{3}\pi, \pi^{*}$ -Anregung von 8, die lediglich zu unspezifischer Umsetzung führte, können aus den Ergebnissen der Triplettanregung von 7 mechanistische Folgerungen abgeleitet werden. Die ${}^{3}\pi, \pi^{*}$ -induzierte Umwandlung $7 \rightarrow (E)$ -15 zeigt, dass im Unterschied zu 5,6-Epoxydienen wie 5 und 6 konjugierte 5,6-Epoxytriene unter Triplettanregung anstelle der Spaltung der C(5),O-Bindung offenbar ausschliesslich Spaltung der C,C-Oxiranbindung (vgl. $7 \rightarrow d$)¹⁵) erfahren. Dieser Reaktionsmodus tritt bei

¹²) In Analogie zur Umwandlung (E)-28→37 (s. Schema 8) [7] sollte (E)-15 mit Licht von λ=254 nm Photospaltung der C(5), O-Bindung erfahren und das Ringverengungsprodukt 16 ergeben. Bei der Nachbestrahlung von (E)-15 konnte aber 16 nicht nachgewiesen werden (die Photochemie von (E)-15 ist Gegenstand einer späteren Mitteilung [11]).

- ¹³) Bei der ¹π, π*-Anregung der Epoxyenonverbindung 4 (s. Schema 1) wurde das Dihydrofuran-Isomer 38 (s. Schema 8) erhalten, welches bei der Nachbestrahlung (λ=254 nm) die isomere Cyclopropanverbindung 39 ergab [8]. Die Möglichkeit, dass in Analogie zu diesen Umwandlungen die Verbindung 17 das Photoprodukt eines Dihydrofuran-Isomeren 40 (s. Schema 7) darstellt, kann nicht ausgeschlossen werden, doch ist zu betonen, dass die Bildung von 40 bei den Photolysen von 7 nicht festgestellt wurde.
- ¹⁴) Die Bildung von **21** wurde bei 30° ¹H-NMR.-spektroskopisch nachgewiesen (vgl. Kap. 2.5).
- ¹⁵) Bei der Photolyse in Aceton (λ≥280 nm) reagiert d thermisch unter elektrocyclischem Ringschluss zur Dihydrofuranverbindung 15; (E)- und (Z)-15 liegen unter diesen Bestrahlungsbedingungen im photostationären (1:1,3)-Verhältnis vor (vgl. Kap. 2.8).

¹¹) Die Isomerisierung $7 \rightarrow d \rightarrow (Z)$ -15 konnte hier nicht nachgewiesen werden; sie tritt aber bei der ${}^{3}\pi, \pi^{*}$ -Anregung von 7 auf und beruht dort auf der (E/Z)-Isomerisierung von (E)-15.

den 5,6-Epoxydienen nur bei der ${}^{1}\pi$, π^* -Anregung auf. Schliesslich gibt der Vergleich der Ergebnisse der Singulett- und der Triplettanregung von 7 den Hinweis, dass die Photospaltung zum Carben f offenbar nur unter Singulettanregung ($\lambda = 254$ nm) auftritt.

Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung sowie der Ciba-Geigy AG, Basel, danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

Allgemeine Bemerkungen. Vgl. [12].

1. Herstellung der Epoxide (E)-6, (E)-7 und (E)-8. 1.1. Epoxydien (E)-6. Zur Vorlage von 14,3 g (40,0 mmol) Methyltriphenylphosphoniumbromid in 200 ml abs. Äther wurden bei ca. 15° unter Ar 20 ml einer 20proz. Lösung von Butyllithium in Hexan getropft. In das Reaktionsgut wurde bei RT. die Lösung von 3,65 g (20,0 mmol) (E)-1 [13] in 250 ml abs. Äther eingetragen und das Gemisch 15 Std. kräftig gerührt. Das Gemisch wurde mit 200 ml Wasser verdünnt und in Pentan aufgearbeitet. Die Säulenchromatographie¹⁶) an SiO₂ in Hexan/Cyclohexan/Äther 10:1:1 ergab 3,4 g (93%). (E)-5-Isopropyl-2,6-dimethyl-5,6-epoxy-1,3-heptadien (6), Sdp. 50-55°/0,01 Torr. - UV. (0,237 mg in 20 ml): 233 (22000). - IR.: 3080w, 3030w S, 3000m, 2960s, 2925s, 2870m, 1610m, 1460m, 1450m S, 1435m, 1380m S, 1375m, 1365m, 1315w, 1295m, 1265w, 1230w, 1195w, 1165w, 1120m, 1080w, 1030w, 975s, 930w, 900m, 890s, 870m. - ¹H-NMR.: 0,91, 1,02 (2d, J = 7, (CH₃)₂CH-C(5)); 1,13, 1,36 (2s, 3 H-C(7), H₃C-C(6)); 1,75 ($qa \times qa$, J = 7, (CH₃)₂CH-C(5), überlagert durch m bei 1,85); 1,85 (m, $w_{1/2} = 2$, H₃C-C(2)); 4,93 $(m, w_{1/2} = 5, 2 \text{ H} - C(1)); 5.93 (AB-System, J = 15, 5, \delta_A = 5, 66, \delta_B = 6, 21, \text{ H} - C(3), \text{ H} - C(4)). - {}^{13}\text{C-NMR.}:$ 18,5, 18,6, 18,8, 20,1, 21,4 (5 qa, 5 CH₃); 116,4 (t, C(1)); 31,6 (d, (CH₃)₂CH); 123,0, 135,9 (2d, C(3), C(4)); 64,4, 71,3 (2s, C(5), C(6)); 140,9 (s, C(2)). - MS.: 180 (14, M^+ , C₁₂H₂₀O), 165 (22), 139 (11), 137 (29), 123 (10), 109 (55), 107 (100), 95 (10), 91 (65), 79 (38), 77 (14), 71 (19), 67 (18), 43 (45), 41 (36), 39 (19).

C₁₂H₂₀O (180,28) Ber. C 79,94 H 11,10% Gef. C 79,98 H 11,28%

1.2. 5, 6-Epoxytrien (E)-7. Die Reaktionslösung von 35,75 g (0,10 mol) Methyltriphenylphosphoniumbromid, 50 ml ca. 20proz. Butyllithium-Lösung in Hexan und 400 ml abs. Äther (s. 1.1) wurde bei RT. mit der Lösung von 8,25 g (40,0 mmol) 3 [6] in 500 ml abs. Äther versetzt und 15 Std. kräftig gerührt. Die Aufarbeitung erfolgte wie unter 1.1 und ergab 6,7 g (82%) (E)-2-Methyl-4-(2', 6', 6'-trimethyl-1', 2'epoxy-3'-cyclohexen-l'-yl)-1, 3-butadien (7), Sdp. 60-70°/0,03 Torr. - UV. (0,112 mg in 10 ml): 238 (23800). - IR.: 3080w, 3035m, 3000w S, 2960s, 2920s, 2905m S, 2870m, 2830w, 1645w, 1605m, 1465m, 1450m, 1435m, 1425w S, 1395w, 1375m, 1360m, 1320w, 1310w, 1255m, 1205w, 1185w, 1170w, 1125w, 1075m, 1025w, 1000w, 975s, 905m, 890s, 850w, 840w, 700m, 655w. - ¹H-NMR.: 0,98 (s, 2s überlagert, 2 H₃C-C(6')); 1,21 (s, H₃C-C(2')); 1,84 (m, $w_{1/2}$ =2,5, H₃C-C(2)); 1,85 (AB-System, J=12, δ_A =1,58, $\delta_B = 2,12, 2 \text{ H} - C(5'); B$ -Teil verbreitert durch allylische Kopplung mit H-C(3'); A-Teil erscheint als $d \times d \times d$, $J_1 = 4,5$, $J_2 = 1,5$; 4,85-4,97 (br. m, 2 H–C(1)); 5,64-5,72 (zentrale Signal gruppe eines entarteten AB-Systems bei 5,68, H-C(3'), H-C(4')); 6,02 (AB-System, $J=15,5, \delta_A=5,79, \delta_B=6,24,$ H-C(3), H-C(4)). - ¹³C-NMR.: 18,7, 23,7, 26,8 (4 qa, 2 qa überlagert bei 18,7, $H_3C-C(2), H_3C-C(2')$, 2 H₃C-C(6')); 38,2 (t, C(5')); 116,7 (t, C(1)); 123,3, 182,2, 131,2, 136,3 (4d); 33,6 (s, C(6')); 61,1, 73,2 (2s, C(1'), C(2')); 141,1 (s, C(2)). - MS.: 204 (24, M⁺, C₁₄H₂₀O), 189 (27), 171 (35), 161 (18), 156 (22), 148 (60), 134 (26), 133 (45), 123 (21), 121 (31), 119 (38), 107 (17), 106 (22), 105 (100), 95 (14), 93 (22), 91 (35), 79 (26), 77 (22), 67 (17), 55 (18), 43 (31), 41 (38), 39 (19).

C₁₄H₂₀O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,12 H 9,98%

1.3. 5, 6-Epoxytrien (E)-8. Zur Reaktionslösung aus 53,6 g (0,15 mol) Methyltriphenylphosphoniumbromid, 75 ml ca. 20proz. Butyllithiumlösung in Hexan und 500 ml abs. Äther (s. 1.1) wurde bei RT. die Lösung von 6,67 g (30,0 mmol) (E)-4-(2', 6', 6'-Trimethyl-3'-oxo-1', 2'-epoxy-1'-cyclohexyl)-3-buten-2on [15] in 300 ml abs. Äther getropft und 20 Std. kräftig gerührt. Das Reaktionsgut wurde mit 150 ml Wasser versetzt, 2mal mit Pentan extrahiert und aufgearbeitet. Die Destillation des Rohproduktes

¹⁶) Flash-Verfahren [14].

lieferte 5,26 g (80%) (E)-2-Methyl-4-(2',6',6'-trimethyl-3'-methyliden-1', 2'-epoxy-1'-cyclohexyl)-1, 3-butadien (8), Sdp. 60-65°/0,02 Torr (Reinheit > 95%). - UV. (0,203 mg in 20 ml): 236 (26000). - IR.: 3090w, 3040w S, 3010w S, 2970s, 2940s, 2880m, 2865m S, 1640w S, 1635w, 1610m, 1470m S, 1460m S, 1450m, 1435m, 1385m S, 1380m, 1365m, 1315w, 1110m, 1075w, 1030w, 975s, 925w, 900s S, 895s. - ¹H-NMR:: 0,93, 1,06 (2s, 2 H₃C-C(6')); 1,25 (s, H₃C-C(2')); 1,48-1,90 (m, 2 H-C(5')); 1,83 (m, w_{1/2} = 2.5, H₃C-C(2)); 2,10-2,34 (m, 2 H-C(4')); 4,86-5,03 (m, 3 H) und 5,14 (m, w_{1/2} = 3,5, 1 H) (H₂C=C(3'), 2 H-C(1)); 5,99 (AB-System, J = 16, δ_A = 5,75, δ_B = 6,24, H-C(3), H-C(4)). - ¹³C-NMR:: 164, 18,6, 25,0, 26,4 (4 qa, 4 CH₃); 27,1, 35,3 (2t, C(4'), C(5')); 1139, 116,7 (2t, C(1), H₂C=C(3')); 1244, 135.9 (2d, C(3), C(4)); 34,1 (s, C(6')); 64,4, 72,3 (2s, C(1'), C(2')); 1409, 145,6 (2s, C(2), C(3')). - MS:: 218 (29, M⁺, C₁₅H₂₂O), 203 (21), 185 (6), 177 (10), 175 (18), 147 (17), 145 (17), 135 (21), 134 (21), 133 (24), 123 (40), 121 (44), 120 (19), 119 (70), 107 (66), 105 (60), 95 (19), 94 (21), 93 (40). 91 (46), 81 (19), 79 (24), 77 (25), 69 (17), 67 (25), 65 (16), 55 (31), 53 (20), 43 (100), 41 (66), 39 (33).

C₁₅H₂₂O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,33 H 10,23%

2. Bestrahlungsversuche. - 2.1. Photolysen von **6**. 2.1.1. Mit Licht von $\lambda = 254$ nm (Lampe A [12], Quarz). Die Lösung von 1,8 g (10,0 mmol) **6** in 220 ml Pentan wurde 21 Std. in der Anordnung I [12] bestrahlt (Umsatz ca. 70%). Die Säulenchromatographie¹⁶) an SiO₂ in Pentan/Äther 20:1 ergab Mischfraktionen, die der ¹H-NMR.- und GC.-Analyse (*SE-30*, 140°) zufolge als Produktverteilung³)¹⁷) aufwisesn: 26% **9**, 29% **10** und 20% **11**. 3-Isopropenyl-1-isopropylcyclopropen (**9**): GC. isoliert. - IR.: 3075w, 2965s, 2930m, 2910m, 2870m, 1775m, 1635m, 1465m, 1455m, 1445m, 1430w, 1380w, 1370m, 1365w S, 1305w, 1290w S, 1240w, 1090w, 1020m, 970w, 950w, 925w, 870s, 710m. - ¹H-NMR.: 1,16 (d, J = 7, (CH₃)₂CH); 1,44 (m, $w_{1/2} = 2,5$, CH₂=C(CH₃)); 2,14 (d, J = 1,5, H-C(3)); 2,76 (d×qa×qa, $J_1=7, J_2=1,5$, (CH₃)₂CH); 4,58 (m, $w_{1/2} = 4,5$) und 4,66 (m, $w_{1/2} = 4$), CH₂=C(CH₃); 6,52 (m, $w_{1/2} = 3$, H-C(2)). - ¹³C-NMR.: 19,9, 20,3, 20,4 (3 qa. 3 CH₃); 106,7 (t. CH₂=C(CH₃)); 25,8, 26,5 (2d. C(3), (CH₃)₂CH); 100,3 (d. C(2)); 129,7 (s. C(1)); 150,6 (s. CH₂=C(CH₃)). - MS.: 122 (4, M⁺, C₉H₁₄), 108 (10), 107 (100), 105 (25), 92 (16), 91 (91), 80 (10), 79 (54), 77 (26), 65 (14), 53 (13), 51 (11), 43 (14), 41 (30), 39 (29).

C₉H₁₄ (122,20) Ber. C 88,45 H 11,55% Gef. C 88,34 H 11,68%

4-Isopropyl-2, 7-dimethyl-3-oxa-1, 4, 7-octatrien (10): GC. isoliert. - UV. (0.384 mg in 10 ml): Endabsorption bis 240. - IR.: 3120w, 3080w, 2965s, 2930m, 2870m, 1675m S. 1665m, 1650m, 1625m, 1465m, 1455m, 1445m, 1425m S. 1385w S. 1380m, 1370m, 1360m, 1350w, 1300w, 1255s, 1220m, 1205w, 1180w, 1125s, 1095m, 1060w, 1045m, 1015w, 975m, 925w, 890s. - ¹H-NMR:: 1.06 (2d, überlagert, J = 7, (CH₃)₂CH-C(4)); 1,71 (m, w_{1/2}=3, H₃C-C(7)); 1,87 (s, H₃C-C(2)); 2,43 (sept.-artiges m, J = 7, (CH₃)₂CH-C(4), überlagert durch m bei 2,60); 2,60 (d-artiges m, J = 7,5, 2 H-C(6)); 3,85 (m, w_{1/2}=4, 2 H-C(1)); 4,63 (m, w_{1/2}=3, 2 H-C(8)); 4,90 (d×t, $J_1=7,5, J_2=1,0, H-C(5)$). - ¹³C-NMR: 20,1, 20,9, 22,6 (4 qa, 2 qa überlagert bei 20,9, 4 CH₃); 33,7 (t, C(6)); 84,8 (t, C(1)); 110,0 (t, C(8)); 31,0 (d, (CH₃)₂CH); 110,7 (d, C(5)); 144,8, 156,9, 157,1 (3s). - MS: 180 (2, M^+ , C₁₂H₂₀O), 165 (9), 152 (77), 151 (33), 137 (27), 122 (11), 109 (39), 108 (11), 107 (78), 105 (14), 97 (14), 95 (23), 94 (11), 93 (13), 91 (35), 82 (13), 81 (54), 79 (30), 77 (12), 71 (17), 69 (21), 67 (29), 57 (10), 55 (27), 53 (14), 43 (100), 41 (57).

C₁₂H₂₀O (180,28) Ber. C 79,94 H 11,18% Gef. C 80,13 H 11,33%

4-Isopropenyl-2-isopropyl-5, 5-dimethyl-4, 5-dihydrofuran (11): GC. isoliert. - IR.: 3080w, 2970s, 2930m, 2870m, 1660m, 1645m, 1465m S, 1460m, 1450m S, 1380m, 1365m, 1350w, 1305w, 1260m, 1220w, 1195m, 1140m, 1125m, 1110w, 1075w, 1055w, 1010w, 980w, 950w, 935w, 925w S, 900m, 895m, 835w. - ¹H-NMR.: 1,05 (d, J = 7, (CH₃)₂CH-C(2)); 1,10, 1,30 (2s, $2 H_3C$ -C(5)); 1,65 (m, $w_{1/2} = 2,5$, CH₂=C(CH₃)); 2,28 (sept.-artiges m, J = 7, (CH₃)₂CH-C(2)); 3,03 (m, $w_{1/2} = 5$, H-C(4)); 4,25 ($d \times d$ -artiges m, $J_1 = 1,5, J_2 = 1, H$ -C(3)); 4,68-4,80 (m, CH₂=C(CH₃)). - MS.: 180 (86, M^+ , C₁₂H₂₀O), 165 (50), 139 (27), 137 (42), 123 (11), 110 (10), 109 (82), 108 (10), 107 (86), 105 (14), 97 (14), 95 (23), 93 (10), 91 (31), 81 (14), 79 (20), 77 (14), 71 (46), 70 (20), 60 (10), 67 (34), 55 (14), 53 (10), 43 (100), 41 (38), 39 (20).

2.1.2. Triplettsensibilisierung von 6 (Lampe B [12], Pyrexfilter). a) In Aceton. Die Lösung von 0,72 g (4,0 mmol) 6 in 75 ml Aceton wurde in der Anordnung I [12] bestrahlt (Umsatz von 6 90%). Die Säulenchromatographie¹⁶) an SiO₂ in Hexan/Äther 10:1 und die Analyse der Mischfraktionen analog

¹⁷) Die flüchtigen und unstabilen Verbindungen 9 und 11 konnten nur gas-chromatographisch isoliert werden.

zu 2.1.1 ergab als Produktverteilung 15% (*E*)-12, 40% (*Z*)-12, 29% 13 und 12% 14. b) In Aceton-d₆. Die Lösung von 54,0 mg (0,3 mmol) 6 in 0,5 ml Aceton-d₆ wurde in der Anordnung IV [12] bis zu ca. 65proz. Umsatz von 6 bestrahlt. Infolge der geringen Separation der ¹H-NMR.-Signale wurden die Produktanteile gas-chromatographisch (*SE-30*, 155°) bestimmt: 22% (*E*)-12/13 (1 Pik), 21% (*Z*)-12 und 12% 14. (E)-3-Isopropyl-3, 6-dimethyl-4, 6-heptadien-2-on ((*E*)-12). Sdp. 45-50°/0,001 Torr (Reinheit ca. 80%; verunreinigt durch (*Z*)-Isomer). – IR.: 2965s, 1705s, 970m, 890m. – ¹H-NMR. (Subtraktionsspektrum des (4:1)-Gemisches von (*E*/*Z*)-12): 0,77, 0,82 (2d, *J*=7, (CH₃)₂CH-C(3)); 1,08 (s, H₃C-C(3)); 1,82 (m, $w_{1/2}=2,5$, H₃C-C(6)); 1,98 (s, 3 H-C(1)); 2,19 ($qa \times qa$, *J*=7, überlagert durch s bei 1,98, (CH₃)₂CH-C(3)); 4,88 (br. s, $w_{1/2}=3,5$, 2 H-C(7)); 5,83 (*AB*-System, *J*=16, δ_A =5,61, δ_B =6,06, H-C(4), H-C(5)). – MS.: 180 (20, *M*⁺, C₁₂H₂₀O); gleiches Fragmentierungsverhalten wie (*Z*)-12.

C₁₂H₂₀O (180,28) Ber. C 79,94 H 11,18% Gef. C 79,78 H 11,19%

(Z)-3-Isopropyl-3, 6-dimethyl-4, 6-heptadien-2-on ((Z)-12): GC. isoliert. - UV. (0,257 mg in 5 ml): 221 (5000). UV. (1,325 mg in 2 ml): 281 (255), 288 (260), 305 (150). - IR.: 3080w, 2965s, 2940m, 2915m S, 2890m, 2870m, 1710s, 1625w, 1460m, 1435w S, 1390m, 1370m, 1350m, 1240w, 1220w, 1175w, 1125w, 1105w, 1090w, 1040w, 1005w, 970w, 950w, 800m. - ¹H-NMR.: 0,73, 0,91 (2d, J=7, (CH₃)₂CH-C(3)); 1,06 (s, H₃C-C(3)); 1,71 (m, w₁/₂=3, H₃C-C(6)); 1,99 (s, 3 H-C(1)); 1,80-2,24 (m, überlagert durch s bei 1,99, (CH₃)₂CH-C(3)); 4,57, 4,83 (2m, w₁/₂=5, 2 H-C(7)); 5,61 (*AB*-System, $J = 12,5, \delta_A = 5,41, \delta_B = 5,81, H-C(4), H-C(5), B-Teil verbreitert). - ^{13}C-NMR.: 14,4, 17,4, 23,2, 26,7 (5 qa, 2 qa überlagert bei 17,4, 5 CH₃); 114,9 (t, C(7)); 35,6 (d, (CH₃)₂CH); 133,9, 134,1 (2d, C(4), C(5)); 56,9 (s, C(3)); 141,5 (s, C(6)); 211,2 (s, C(2)). - MS.: 180 (9, M⁺, C₁₂H₂₀O), 165 (2), 138 (12), 137 (100), 123 (15), 109 (10), 96 (10), 95 (92), 93 (10), 91 (10), 81 (26), 79 (10), 77 (10), 67 (14), 57 (36), 55 (13), 43 (52), 41 (22), 39 (10).$

C12H20O (180,28) Ber. C 79,94 H 11,18% Gef. C 80,37 H 11,39%

3-Isopropenyl-5, 6-dimethyl-4-hepten-2-on (13): GC. isoliert. – UV. (1,048 mg in 5 ml): 290 (230). – IR.: 3080w, 2965s, 2925m S, 2865m, 1715s, 1640m, 1460m S, 1445m, 1435m S, 1375m, 1350m, 1180w, 1155m, 945w, 895m. – ¹H-NMR. (Reinheit ca. 95%): 1,01 (d, 2d überlagert, J = 7, H₃C-C(6), 3 H–C(7)); 1,56 (d, J = 1.5, H₃C-C(5)); 1,64 (m, $w_{1/2}=3$, CH₂=C(CH₃)); 2,01 (s, 3 H–C(1)); 2,27 (m, J = 7, H–C(6)); 3,81 (d, J = 9.5, H–C(3)); 4,82 (m, $w_{1/2}=3$, CH₂=C(CH₃)); 5,39 (d×d×qa, $J_1=9.5$, $J_2=J_3=1$, H–C(4)). – ¹³C-NMR.: 13,8, 20,9, 21,3, 21,4, 27,9 (5 qa, 5 CH₃); 113,4 (t, CH₂=C(CH₃)); 37,1 (d, C(6)); 60,2 (d, (3)); 117,7 (d, C(4)); 143,1, 145,2 (2s, CH₂=C(CH₃), C(5)); 207,8 (s, C(2)). – MS.: 180 (26, M^+ , C₁₂H₂₀O), 138 (12), 137 (95), 109 (11), 107 (14), 95 (100), 91 (15), 81 (28), 79 (11), 77 (10), 67 (18), 57 (27), 55 (14), 53 (10), 43 (46), 41 (26), 39 (10).

C₁₂H₂₀O (180,28) Ber. C 79,94 H 11,18% Gef. C 79,69 H 11,24%

5-Isopropenyl-3-isopropyl-2, 2-dimethyl-2, 5-dihydrofuran (14): GC. isoliert. – UV. (0,196 mg in 2 ml): Endabsorption bis 230. – IR.: 3075w, 2970s, 2930m, 2895w S, 2870m, 2840w, 1650w br., 1455m, 1450m S, 1380w, 1375m, 1365m, 1355m, 1305w, 1280w, 1270w, 1220w, 1180m, 1160m, 1090w, 1070m, 1045w, 1035w, 1010m, 995m, 940w, 900m, 870w, 855w, 850w. – ¹H-NMR.: 1,09 (d, $(CH_3)_2CH-C(3)$); 1,22, 1,27 (2s, 2 H₃C-C(2)); 1,61 (m, $w_{1/2}=2$, CH₂=C(CH₃)); 2,17 (sept.-artiges m, J=7, (CH₃)₂CH-C(3)); 4,68 (m, $w_{1/2}=5$) und 4,85 (m, $w_{1/2}=4$), CH₂=C(CH₃)); 4,93 (br. s, $w_{1/2}=3$, H-C(5)); 5,22 (m, $w_{1/2}=3$, H-C(4); Einstrahlung bei 2,17 ergibt ein d bei 5,22, J=1,5). – ¹³C-NMR.: 17,5, 23,9, 24,1, 27,4, 27,7 (5 qa, 5 CH₃); 111,4 (t, CH₂=C(CH₃)); 26,1 (d, (CH₃)CH); 86,9 (d, C(5)); 119,5 (d, C(4)); 88,8 (s, C(2)); 146,0, 155,3 (2s, C(3) und CH₂=C(CH₃)). – MS.: 180 (25, M^+ , C₁₂H₂₀O), 165 (100), 139 (43), 137 (48), 123 (40), 109 (13), 107 (17), 97 (41), 95 (15), 69 (35), 55 (12), 43 (54), 41 (33), 39 (14). C₁₂H₂₀O (180,28) Ber. C 79,94 H 11,18% Gef. C 80,11 H 11,27%

2.2. Photolysen von 7. 2.2.1. Mit Licht von $\lambda = 254$ nm (Lampe A [12], Quarz). a) In Pentan. Die Lösung von 1,53 g (7,5 mmol) 7 in 150 ml Pentan wurde in der Anordnung I [12] bestrahlt (Umsatz ca. 80%). Die Säulenchromatographie¹⁶) an SiO₂ in Hexan/Cyclohexan/Äther 10:1:1 ergab zusammen mit der ¹H-NMR.-Analyse des Photolyse-Rohproduktes als Produktverteilung: 35% (E)-15, 40% 17, 5% 16 sowie 300 mg komplexes Gemisch unbekannter Produkte; die Produkte (E)-15 und 16 erwiesen sich als instabil. b) In Acetonitril-d₃. Die Lösung von 20 mg (0,1 mmol) 7 in 0,4 ml CD₃CN wurde in der Anordnung IV [12] bis zu ca. 85proz. Umsatz bestrahlt. Die ¹H-NMR.-Analyse zeigt die Produktverteilung von 2.2.a). (E)-1-(3'-Methyl-1', 3'-butadien-1'-yl)-3, 7,7-trimethyl-2-oxabicyclo[3.2.0]hept-3-en

((*E*)-**15**): Sdp. 40–45°/0,03 Torr (Reinheit nach GC.-Isolation (*SE*-30, 170°) *ca.* 95%). – UV. (0,092 mg in 10 ml): 230 (24600). – IR.: 3085w, 3025w, 2975m S, 2955s, 2925s, 2900m S, 2865m, 1665s, 1610m, 1460m, 1450m S, 1435m, 1380s, 1365m, 1310w, 1290w, 1270m, 1255m, 1245m S, 1190s, 1165w, 1140w, 1115w, 1080w, 1045w, 1010m S, 1005m, 975s, 965s, 920m, 890s, 840w. – ¹H-NMR.: 1,00, 1,12 (2s, 2 H₃C-C(7)); 1,72 (*AB*-System, J_1 =12, δ_A =1,57, δ_B =1,87, 2 H-C(6); *B*-Teil teilweise überlagert durch *m* bei 1,84; *A*-Teil verdoppelt durch J_2 =4,5); 1,78 (*m*, $w_{1/2}$ =3) und 1,84 (*m*, $w_{1/2}$ =3) (H₃C-C(3),H₃C-C(3')); 3,03–3,25 (*m*, H-C(5)); 4,53–4,62 (*m*, H-C(4)); 4,92 (*s*, $w_{1/2}$ =4, 2 H-C(4')); 5,97 (*AB*-System, *J*=16, δ_A =5,74, δ_B =6,21, H-C(1'), H-C(2')). – ¹³C-NMR.: 13,5, 18,6, 24,4, 27,5 (4 *qa.* 4 CH₃); 41,0 (*t.* C(6)); 116,5 (*t.* C(4')); 42,4 (*d.* C(5)); 100,9 (*d.* C(4)); 128,1, 131,8 (2*d.* C(2'), C(1')); 44,4 (*s.* C(7)); 93,2 (*s.* C(1)); 141,5 (*s.* C(3')); 156,3 (*s.* C(3)). – MS.: 204 (noch sichtbar M^+ , C₁₄H₂₀O), 149 (12), *148* (100), 133 (49), 106 (10), 105 (68), 91 (15), 79 (11), 77 (11), 43 (23), 41 (16), 39 (11).

C14H20O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,48 H 9,75%

(E)-5-Acetyl-2, 2-dimethyl-1-(3'-methyl-1', 3'-butadien-1'-yl)bicyclo [2.1.0] pentan (16): Sdp. 60-65°/ 0,09 Torr (Reinheit ca. 95%). – UV. (0,2736 mg in 20 ml): 240 (18000). UV. (3,0 g in 5 ml): Endabsorption bis 360. – IR.: 3085w, 3050w, 2995m S, 2960s, 2930s, 2865s, 1695s, 1630w, 1605m, 1460m, 1450m, 1435m, 1420m, 1375s, 1365s S, 1350m, 1330w S, 1310w, 1250m, 1220m, 1175s, 1160s, 1140w, 1120w, 1030w S, 1020w, 1010w, 965s, 950w, 945w, 885m, 865m. – ¹H-NMR: 1,02, 1,22 (2s, 2 H₃C-C(2)); 1,45 (*AB*-System, $J_1=11$, $\delta_A=1,25$, $\delta_B=1,64$, 2 H–C(3); *B*-Teil verdoppelt durch $J_2=4,5$; *A*-Teil leicht verbreitert); 1,75 (m, $w_{1/2}=3$, H₃C–C(3')); 2,06 (s, CH₃CO); 2,34 (d, leicht verbreitert, J=4,5, H–C(4)); 2,41 (d, J=1, H–C(5)); 4,82 (s, $w_{1/2}=3,5$, 2 H–C(4')); 5.77 (*AB*-System, J=16, $\delta_A=5,50$, $\delta_B=6,03$, H–C(1'), H–C(2')). – ¹³C-NMR:: 18,4, 22,8, 28,9, 31,3 (4 qa, 4 CH₃); 36,8 (t, C(3)); 115,7 (t, C(4')); 26,5 (d, C(4)); 44,7 (d, C(5)); 122,9, 136,2 (2d, C(1'), C(2')); 40,3, 47,6 (2s, C(1), C(2)); 141,7 (s, C(3')); 205,5 (s, CH₃CO). – MS:: 204 (30, M^+ , C₁₄H₂₀O), 189 (13), 162 (14), *161* (100), 147 (17), 133 (14), 131 (12), 119 (29), 105 (27), 91 (21), 77 (11), 69 (12), 55 (18), 43 (40), 41 (18).

C14H20O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,23 H 10,01%

8-Isopropenyl-3, 3, 7-trimethylbicyclo [5.1.0]oct-5-en-2-on (17): Sdp. 65-70°/0,05 Torr. – UV. (2,30 mg in 10 ml): 261 (700). – IR.: 3085w, 3020m, 2965s, 2935s, 2925s, 2865m, 1700s, 1645m, 1470m, 1460m, 1450m, 1380m, 1370m, 1360m, 1345w, 1320m, 1300w, 1240m, 1205w, 1190w, 1150m, 1115w, 1095m, 1075w, 1055m, 1050m S, 1025w, 1010w, 950w, 935w, 890s, 845w. – ¹H-NMR.: 1,01, 1,11, 1,22 (3s, 2 H₃C-C(3), H₃C-C(7)); 1,73 (*AB*-System, $J_1=6$, $\delta_A=1,54$, $\delta_B=1,92$, H–C(1), H–C(8); *B*-Teil verdoppelt durch $J_2=2,5$. Einstrahlung bei 5,6 löscht diese Kopplung; *A*-Teil verbreitert); 1,78 (*m*, $w_{1/2}=3$, CH₂=C(CH₃)); ca. 2,31 (*AB*-System, $J_1=13$, $\delta_B=2,59$, verdoppelt durch $J_2=5$; *A*-Teil durch *m* bei 1,78; 2 H–C(4)); 4,64 (*m*, $w_{1/2}=4$) und 4,85 (*m*, $w_{1/2}=5$) (CH₂=C(CH₃)); 5,4–5,75 (*m*, H–C(5), H–C(6)). – ¹³C-NMR.: 169, 23,8, 24,7, 26,6 (4 *qa*, 4 CH₃); 37,9 (*t*. C(4)); 111,9 (*t*. CH₂=C(CH₃)); 34,2, 36,7 (2d, C(1)), C(8)); 129,2, 135,3 (2d, C(5), C(6)); 26,4 (s, C(3)); 48,3 (s, C(7)); 141,5 (s, CH₂=C(CH₃)); 311 (58), 120 (26), *119* (100), 117 (11), 107 (25), 106 (24), 105 (92), 95 (10), 93 (24), 92 (20), 91 (56), 79 (24), 77 (26), 69 (19), 67 (15), 65 (13), 55 (24), 53 (14), 43 (13), 41 (46), 39 (22).

C14H20O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,13 H 9,86%

2.2.2. Triplettsensibilisierung von 7 (Lampe B [12], Pyrexfilter). a) In Aceton. Die Lösung von 1,53 g (7,5 mmol) 7 in 150 ml Aceton wurde in der Anordnung I [12] bestrahlt (Umsatz von 7 ca. 90%). Die ¹H-NMR.- und GC.-Analyse (SE-30, 175°) des Rohproduktes ergab als Produktverteilung 36% (E)-15 und 45% (Z)-15. b) In Aceton-d₆. Die Lösung von 18,4 mg (0,09 mmol) 7 in 0,35 ml Aceton-d₆ wurde in der Anordnung IV [12] (Umsatz von (E)-7 ca. 80%) bestrahlt. Die ¹H-NMR.-Analyse der Reaktionslösung zeigte eine Produktverteilung wie bei 2.2.2.a). (Z)-1-(3'-Methyl-1', 3'-butadien-1'-yl)-3, 7, 7-trimethyl-2-oxabicyclo[3.2.0]hept-3-en ((Z)-15): GC. isoliert (Reinheit ca. 95%). – UV. (0,266 mg in 20 ml): 222 (10700). – IR.: 3085w, 3005m S, 2975m S, 2960s, 2925s, 2905m S, 2865m, 1665s, 1655w S, 1630w, 1460m S, 1440m, 1380s, 1365m, 1300w, 1260s, 1250m S, 1190s, 1160m, 1095w. 1080w, 1010m S, 1005s, 955w, 920m, 905w, 890m. – ¹H-NMR.: 1,03, 1,12 (2s, 2 H₃C-C(7)); 1,67 (AB-System, J₁ = 12, δ_A = 1,51, δ_B = 1,83, 2 H-C(6); B-Teil überlagert durch s bei 1,81 und m bei 1,63; A-Teil verdoppelt durch J₂=4,5); 1,63 (m, w_{1/2}=3) und 1,81 (br. s) (H₃C-C(3)), H₃C-C(3')); 3.03-3,24 (m, H-C(5)); H-C(1'), H-C(2'); B-Teil leicht verbreitert). – ¹³C-NMR.: 13,5, 23,0, 24,9, 27,9 (4 qa, 4 CH₃); 40,8 (*t*, C(6)); 115,2 (*t*, C(4')); 44,4 (*d*, C(5)); 101,3 (*d*, C(4)); 128,7, 134,2 (2*d*, C(1'), C(2')); 44,3 (*s*, C(7)); 91,6 (*s*, C(1)); 141,7 (*s*, C(3')); 155,3 (*s*, C(3)). – MS.: 204 (13, M^+ , C₁₄H₂₀O), 189 (3), 171 (<1), 161 (8), 149 (11), 148 (100), 147 (14), 133 (65), 123 (15), 121 (12), 119 (15), 106 (16), 105 (86), 91 (18), 79 (14), 77 (19), 43 (32), 41 (17), 39 (12).

C₁₄H₂₀O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,20 H 9,93%

2.3. Photolysen von (E)-15 bzw. (Z)-15. 2.3.1. Mit Licht von $\lambda = 254$ nm (Lampe A [12], Quarz). a) Die Lösung von 21,0 mg (0,10 mmol) (E)-15 in 0,4 ml CD₃CN wurde in der Anordnung IV [12] bestrahlt. Die ¹H-NMR.-spektroskopische Kontrolle des Photolyseverlaufs zeigte die Bildung eines äusserst komplexen Gemisches unbekannter Produkte, das aufgrund der geringen Substanzmenge nicht weiter untersucht wurde. b) Analog zu 2.3.1.a) wurde die Lösung von 13,5 mg (0,07 mmol) (Z)-15 in 0,3 ml CD₃CN bestrahlt. Die GC.-Analyse des Rohproduktes ergab nach *ca.* 60proz. Umsatz ein ähnliches Produktgemisch wie in 2.3.1.a), wobei aber zudem Isomerisierung zu (E)-15 (10%) festgestellt wurde.

2.3.2. Versuch zur Triplettsensibilisierung von (E/Z)-15 (Lampe B [12], Pyrexfilter). Die Bestrahlung von 17,9 mg (0,09 mmol) (E)-15 parallel zu 19,0 (0,09 mmol) (Z)-15 in je 0,4 ml Aceton- d_6 (Anordnung IV [12]) führte nach 3 Std. zu einem photostationären (E/Z)-Isomerengemisch von 15 ((E/Z) ca. 1:1,3).

2.4. Photolysen von 8. 2.4.1. Mit Licht von $\lambda = 254$ nm (Lampe A [12], Quarz). 2.4.1.1. In Pentan bei $+10^{\circ}$. Die Lösung von 2,18 g (10,0 mmol) 8 in 200 ml Pentan wurde in der Anordnung I [12] bis zu 85proz. Umsatz bestrahlt. Die Säulenchromatographie¹⁶) an SiO₂ in Hexan/Cyclohexan/Äther 10:1:1 lieferte Mischfraktionen, deren ¹H-NMR.- und GC.-Analyse (SE-30, 165°; OF-1, 155°) als Produktverteilung 19% 18A, 20% 18B, 26% 19A, 15% 19B und 6% 20 ergab. 9-Isopropenyl-3, 3, 8-trimethyltricyclo-[4.3.0.06.8]nonan-2-on (18), Isomer 18A: GC. isoliert. - UV. (6,5 mg in 5 ml): 288 (100). - IR.: 3085w, 3050w, 2975s, 2945s, 2925s, 2895m S, 2855m, 1705s, 1645w, 1450m, 1385w, 1375w S, 1365w, 1320w, 1300w, 1190w, 1170w, 1150w, 1135w S, 1125w, 1070m, 1035w, 1030w S, 1020w, 960w, 890m. - ¹H-NMR.: 0,63 (AB-System, $J_1 = 4.5$, $\delta_A = 0.32$, $\delta_B = 0.95$, 2 H–C(7), Signal bei δ_A verdoppelt durch Kopplung mit H-C(9), J₂ = 1,5); 1,07, 1,16, 1,25 (3s, 2 H₃C-C(3), H₃C-C(8)); 1,0-1,8 (m, 3 H) und 2,0-2,4 (m, 1 H) (2 H-C(4), 2 H-C(5)); 1,65 (m, $w_{1/2}=3$, CH₂=C(CH₃)); 2,26 (d, J=4,5, H-C(1); Einstrahlen im m bei 2,64-2,76 führt das d in ein s über); 2,64-2,76 (m, H-C(9)); 4,58 (m, $w_{1/2} = 5$) und 4,72 (m, $w_{1/2} = 5$) $(CH_2=C(CH_3))$. - ¹³C-NMR.: 16,2, 21,3, 22,8, 24,7 (4 *qa*, 4 *C*H₃); 20,4, 22,8, 38,1 (3*t*); 109,7 $(t, CH_2=C(CH_3));$ 48,2, 50,7 (2d, C(1), C(9)); 27,2, 27,4 (2s, C(6), C(8)); 44,4 (s, C(3)); 144,3 $(s, CH_2 = C(CH_3)); 217,0 (s, C(2)). - MS.: 218 (6, M^+, C_{15}H_{22}O), 203 (11), 162 (29), 147 (17), 135 (17), 182 (17), 182 (17), 182 (17), 182 (17), 182 (17), 182 (17), 182 (17), 182 (18),$ 134 (66), 133 (20), 121 (11), 120 (15), 119 (100), 106 (12), 105 (36), 93 (22), 92 (13), 91 (38), 79 (12), 77 (18), 55 (10), 41 (17), 39 (14).

C15H22O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,42 H 10,26%

Isomer **18B**: die instabile Verbindung konnte in *ca.* 80proz. Reinheit erhalten werden, Sdp. 50[°]/0,001 Torr. – IR.: 3080w, 3030w, 2965s, 2925s, 2860m, 1710s, 1640m, 1465m, 1450m, 1380m, 1365m, 1175w, 1120m, 895m, 885m. – ¹H-NMR.: 0,50 (*AB*-System, J=4, $\delta_A=0,23$, $\delta_B=0,77$, 2 H-C(7)); 1,03, 1,18, 1,24 (3s, $2 H_3C-C(3)$, $H_3C-C(8)$); 1,0–2,4 (m, 4 H); 1,78 (m, $w_{1/2}=3,5$, $CH_2=C(CH_3)$); 2,49 und 3,19 (2d, J=4,5, H-C(1), H-C(9)); 4,76–4,83 (m, 1 H) und 4,83–4,91 (m, 1 H) ($CH_3=C(CH_3)$). – MS.: 218 (14, M^+ , $C_{15}H_{22}O$); gleiches Fragmentierungsverhalten wie bei **18A**.

3, 5, 9, 9-Tetramethyltricyclo [5.4.0.0^{1,3}]undec-5-en-8-on (19) Isomer 19A: Sdp. 55-60°/0,05 Torr. – UV. (4,8 mg in 5 ml): 294 (60). – IR.: 3060w, 3040w, 2980s, 2930s, 2870s, 2865m S, 2830m, 1705s, 1460m S, 1450m, 1385m, 1365w, 1325w, 1295w, 1285w, 1220w, 1200w, 1135w, 1100m, 1080w, 1055m, 1025m, 1010w, 995w, 985w, 970w S, 965w, 945w, 935w S, 930w, 870m, 865w. – ¹H-NMR.: 0,31 (*AB*-System, J = 4, $\delta_A = -0.03$, $\delta_B = 0.66$, 2 H–C(2)); 1.02, 1,14, 1,21 (3s, 2 H₃C–C(9), H₃C–C(3)); 1,3-2,3 (m, 2 H–C(10), 2 H–C(11)); 1,68 (m, $w_{1/2} = 4$, H₃C–C(5)); 2,05 (s, $w_{1/2} = 4$,5, 2 H–C(4)); 3,37 (d-artiges m, J = 6, H–C(7)); 5,16 (d-artiges m mit Feinstruktur, J = 6, H–C(6)). – ¹³C-NMR.: 20,4, 23,9, 25,4 (4 *qa*, 2 *qa* überlagert bei 25,4, 4 *C*H₃); 19,8 (*t*, C(2)); 26,9, 37,8, 39,1 (3*t*, C(10), C(11), C(4)); 48,5 (d, C(7)); 117,3 (d, C(6)); 20,6, 27,7 (2s, C(1), C(3)); 44,9 (s, C(9)); 134,1 (s, C(5)); 215,5 (s, C(8)). – MS: 218 (37, M^+ , C₁₅H₂₂O), 216 (26), 203 (20), 201 (17), 175 (38), 173 (15), 163 (91), 147 (13), 134 (45), 133 (23), 132 (53), 120 (24), *119* (100), 117 (14), 107 (15), 106 (38), 105 (94), 95 (15), 94 (87), 93 (15), 92 (28), 91 (47), 79 (21), 77 (26, 65 (10), 55 (13), 53 (11), 41 (36), 39 (16).

C15H22O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,35 H 9,98%

Isomer **19B**: GC. isoliert. – UV. (5,1 mg in 5 ml): Endabsorption bis 370. – IR.: 3070w, 3040w S, 2980s, 2945m S, 2930s, 2890m S, 2870s, 2830m, 1710s, 1470m S, 1460m S, 1450m, 1435m S, 1385m, 1380m S, 1365m, 1215w, 1175w, 1125m, 1100m, 1045w, 1030w, 995w, 965w, 940w, 895w, 880m. – ¹H-NMR.: 0,16 (*AB*-System, J=4, $\delta_A = -0.22$, $\delta_B = 0.54$, 2 H-C(2); Signal bei δ_B zusätzlich aufgespalten durch Kopplungen von J < 1); 1,05, 1,15, 1,19 (3s, $2 \text{ H}_3\text{C}-\text{C}(9)$, $\text{H}_3\text{C}-\text{C}(3)$); 1,0–1,8 (*m*, 3 H) und 1,9–2,4 (*m*, 1 H) (2 H–C(10), 2 H–C(11)); 1,65 (*m*, $w_{1/2} = 5.5$, H₃C–C(5)); 2,04 (*s*-artiges *m*, $w_{1/2} = 5.5$, 2 H–C(4)); 3,16–3,26 (*m*, H–C(7)); 5,44–5,55 (*m*, H–C(6)). – ¹³C-NMR.: 20,5, 23,8, 25,6 (4 *qa*, 2 *qa* überlagert bei 25,6, 4 CH₃); 16,1 (*t*, C(1)); 26,9, 37,4, 39,8 (3*t*, C(10), C(11), C(4)); 46,1 (*d*, C(7)); 115,7 (*d*, C(6)); 19,9, 29,8 (2*s*, C(1), C(3)); 44,6 (*s*, C(9)); 133,1 (*s*, C(5)); 213,9 (*s*, C(8)). – MS.: 218 (30, M^+ , C₁₅H₂₂O); gleiches Fragmentierungsverhalten wie bei **19A**.

C15H22O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,35 H 10,30%

6-(3'-1sopropenyl-1'-cyclopropen-1'-yl)-6-methyl-3-methylidenheptan-2-on (20): Sdp. 45-50°/ 0,01 Torr. – UV. (0,2405 mg in 20 ml): 208 (16600). – IR.: 3095w S, 3080w, 2970s, 2935m S, 2915m, 2870m, 1765w, 1680s, 1630m, 1465m S, 1450m, 1430m, 1425m S, 1380m S, 1360m, 1320w, 1260w S, 1240w, 1150w, 1120w, 1025w, 970w, 960w S, 935m, 875m. – ¹H-NMR. (Reinheit *ca.* 90%): 1,13, 1,15 (2s, 3 H–C(7), H₃C–C(6)); 1,3–1,6 (*m*, überlagert durch *m* bei 1,46, 2 H–C(5)); 1,46 (*m*, $w_{1/2}$ =3, CH₂=C(CH₃)); 1,9–2,35 (*m*, überlagert durch *d* bei 2,14 und *s* bei 2,22, 2 H–C(4)); 2,14 (*d*, *J*=1,5, H–C(3')); 2,22 (*s.* 3 H–C(1)); 4,53–4,63 (*m*, 1 H) und 4,63–4,71 (*m*, 1 H) (CH₂=C(CH₃)); 5,66 (*s.* $w_{1/2}$ =3) und 5,86 (*s.* $w_{1/2}$ =2) (H₂C=C(3)); 6,53 (*d*, *J*=1,5, H–C(2')). – MS.: 218 (31, M⁺, C₁₅H₂₂O), 203 (12), 175 (67), 147 (14), 145 (15), 135 (23), 133 (23), 122 (53), *121* (100), 119 (66), 107 (55), 105 (67), 93 (33), 91 (49), 81 (24), 79 (26), 77 (29), 55 (19), 43 (89), 41 (33), 39 (18).

C15H22O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,48 H 10,17%

2.4.1.2. In Acetonitril. a) $Bei + 50^{\circ}$. Die Lösung von 0,91 g (4,2 mmol) 8 in 100 ml Acetonitril wurde bei 50° in der Anordnung I [12] bestrahlt (Umsatz *ca.* 100%). Es wurde wie in 2.4.1.1 aufgearbeitet und als Produktverteilung 13% 18A, 16% 18B, 26% 19A, 34% 19B und 7% 20 erhalten.

b) Bei -10° . Die Lösung von 1,31 g (6,0 mmol) 8 in 100 ml CH₃CN wurde bei -10° in der Anordnung I [12] bestrahlt (Umsatz *ca*. 100%). Die Aufarbeitung analog 2.4.1.1 ergab als Produktverteilung 26% 18A, 31% 18B, 20% 19A, 10% 19B und 4% 20.

c) In Acetonitril-d₃ bei -30° . Die Lösung von 51 mg (0,23 mmol) **8** in 0,5 ml CD₃CN wurde in einem Quarz-NMR.-Messrohr in der Anordnung I [12] bestrahlt (die mit Pentan gefüllte Apparatur wurde auf -30° gekühlt). Nach 24 Std. wurde ¹H-NMR.-spektroskopisch¹⁸) bei -30° die folgende Zusammensetzung (abzüglich 70% von nicht umgesetztem **8**) des Photolysegemisches beobachtet: 17% **19A**, 15% **19B** und ca. 34% **21** sowie Spuren von **18A** und **18B**. Nach dem Erwärmen der Photolyselösung auf 25° (ca. 10 Min.) wurde diese nochmals bei -30° ¹H-NMR.-spektroskopisch untersucht. Bei unverändertem Anteil von nicht umgesetztem **8** (70%) lagen ca. 17% **19A** und ca. 50% **19B** vor, während **21** nicht mehr nachgewiesen werden konnte. ¹H-NMR.-Signale des Rohproduktes, die (E)-8-(2'-Methyl-1'-cyclopropen-1'-yl)-2, 6, 6-trimethyl-1, 3-octadien-5-on (**21**) zugeordnet werden können (in CD₃CN): 0,66 (s, 2 H-C(3')); 1,10 (s, 2 H₃C-C(6)); (AB-System, J=15,5, $\delta_A=6,62$, $\delta_B=7,25$, H-C(3), H-C(4)).

d) ¹H-NMR.-spektroskopische Kontrolle der Photolyse. Eine Lösung von 38 mg (0,17 mmol) 8 in 0,4 ml CD₃CN wurde in der Anordnung IV bestrahlt. Bei 60proz. Umsatz wurden **19B** als Hauptprodukt sowie in Spuren **18A** und **19A** nachgewiesen.

2.4.2. Versuche zur Triplettsensibilisierung von 8 (Lampe B [12], Pyrexfilter). 2.4.2.1. In Aceton. Die Lösung von 55 mg (0,25 mmol) 8 in 5 ml Aceton wurde 9 Std. in der Anordnung III [12] (Umsatz von (E)-8 50%) bestrahlt. Der ¹H-NMR.- und GC.-Analyse zufolge (*OV-17*, 190°) lag lediglich unspezifische Produktbildung vor.

2.4.2.2. In Aceton-d₆. Die Lösung von 50 mg (0,23 mmol) **8** in 0,5 ml Aceton-d₆ wurde in der Anordnung IV [12] (Umsatz von **8** 80%) bestrahlt. Die ¹H-NMR.-spektroskopische Kontrolle des Photolyseverlaufes zeigte das gleiche Ergebnis wie 2.4.2.1.

2.4.2.3. In Benzol unter Zusatz von Acetophenon. Die Lösung von 55 mg (0,25 mmol) 8 und 240 mg (2,0 mmol) Acetophenon in 5 ml Benzol wurde wie in 2.4.2.1 bestrahlt. Dabei reagierte 8 unspezifisch wie in 2.4.2.1 (GC.-Analyse).

¹⁸) Integration über den Bereich der Olefin-H-Atome und Cyclopropan-H-Atome.

3. Weitere Versuche. - 3.1. Versuche zum Strukturbeleg der Produkte. 3.1.1. Hydrolyse von 10. Die Lösung von 120 mg (0,66 mmol) 10 in 5 ml Dioxan/Wasser 1:1 wurde mit 30 mg (0,33 mmol) Oxalsäure versetzt. Nach 1 Std. Rühren bei RT. wurde in Äther aufgearbeitet und quantitativ 2, 6-Dimethyl-6-hepten-3-on (25) erhalten, Sdp. 20°/0,05 Torr. - IR.: 3080w, 2970s, 2935s, 2875m, 1710s, 1650m, 1465m, 1455m S, 1445m, 1410w, 1385m, 1375m, 1365w, 1355w, 1295w, 1255w, 1120w, 1075m, 1020w, 1010w S, 955w, 925w, 890s, 885s S. - ¹H-NMR: 1,05 (d, 2d überlagert, J = 7, H₃C-C(2), 3 H-C(1)); 1,70 (m, w_{1/2}=3, H₃C-C(6)); 2,08-2,60 (m, 2 H-C(4), 2 H-C(5)); 2,51 (m, sept.-artig, J = 7, H-C(2)); 4,54-4,67 (m, 2 H-C(7)). - MS.: 140 (8, M^+ , C₉H₁₆O), 107 (10), 97 (26), 71 (89), 70 (12), 69 (100), 55 (33), 43 (90), 41 (78).

3.1.2. Ozonolyse von 16. In die Lösung von 35 mg (0,17 mmol) 16 in 30 ml Methanol wurde bei – 70° Ozon eingeleitet, bis der Reaktant vollständig umgesetzt war (DC.-Kontrolle). Nach dem Spülen mit N₂ wurde mit 0,2 ml Dimethylsulfid versetzt, auf RT. erwärmt und in Äther aufgearbeitet. Die Säulenchromatographie an SiO₂ in Hexan/Äther 3:2 ergab 13 mg 29 (46%) [7].

3.2. Isomerisierungen mit Bortrifluoriddiäthylätherat. 3.2.1. Von 6. Die Lösung von 180 mg (1,0 mmol) 6 in 30 ml Benzol wurde bei RT. rasch und unter starkem Rühren mit der Lösung von 70 mg (0,5 mmol) BF₃ · OEt₂ in 10 ml Benzol versetzt, 10 Min. gerührt und mit 10 ml Wasser verdünnt. Das Reaktionsgut wurde in Benzol aufgearbeitet und das Rohprodukt in Hexan/Äther 20:1 an SiO₂ chromatographiert¹⁶). Neben einem Gemisch unbekannter Produkte (43 mg) wurden 117 mg (65%) **14** erhalten.

3.2.2. Von 7. Die Lösung von 408 mg (2,0 mmol) 7 in 50 ml Benzol wurde bei RT. rasch unter kräftigem Rühren mit 140 mg (1,0 mmol) BF₃ · OEt₂ versetzt, 5 Min. gerührt, mit 20 ml Wasser verdünnt und in Benzol aufgearbeitet. Die Säulenchromatographie an SiO₂ in Hexan/Cyclohexan/Äther 5:1:1 ergab 190 mg (47%) (E)-6-(3'-Methyl-1', 3'-butadien-1'-yl)-5, 5, 6-trimethyl-2-cyclohexenon (22). – UV. (0,327 mg in 25 ml): 235 (21800). UV. (0,608 mg in 2 ml): 293 (500), 301 (540), 311 (440). – IR.: 3080w, 3025m, 2980s S, 2965s, 2925s, 2890m, 2865m, 2835w, 1705s, 1635w, 1605w, 1465m, 1450m, 1435m, 1380m, 1365m, 1335w, 1310w, 1265w, 1235w, 1135w S, 1120w, 1085w, 1030m, 995m S, 990m, 970m, 890s, 855w, 720w. – ¹H-NMR.: 1,05, 1,21 (3s, 2s überlagert bei 1,05, 2 H₃C-C(5), H₃C-C(6)); 1,79 (m, w_{1/2} = 2,5, H₃C-C(3')); 2,20 (d, schwach strukturiert, J = 4, 2 H-C(4')); 4,85 (s, w_{1/2} = 3, 2 H-C(4')); 5,76 (AB-System, $J_1 = 10$, $\delta_A = 5,77$, H-C(2), $\delta_B = 5,83$, H-C(3); A-Teil leicht verbreitert; B-Teil aufgespalten durch $J_2 = 4$); 5,77 (AB-System, J = 16, $\delta_A = 5,51$, $\delta_B = 6,03$, H-C(1'), H-C(2')). - ¹³C-NMR.: 18,6, 25,9, 26,1, 26,2 (4 qa, 4 CH₃); 38,8 (t, C(4)); 116,4 (t, C(4')); 124,9, 131,8, 132,9, 133,1 (4d); 43,7, 50,3 (2s, C(5), C(6)); 141,5 (s, C(3')); 216,0 (s, C(1)). – MS: 204 (9, M^+ , C₁₄H₂₀O), 191 (1), 176 (9), 161 (20), 157 (6), *134* (100), 133 (39), 119 (74), 107 (17), 106 (19), 105 (44), 93 (15), 92 (14), 91 (33), 79 (12), 77 (16), 55 (17), 41 (24), 39 (15).

C14H20O (204,30) Ber. C 82,30 H 9,87% Gef. C 82,38 H 10,04%

3.2.3. Von 8. Die Lösung von 330 mg (1,5 mmol) 8 in 40 ml Benzol wurde bei RT. mit 105 mg (0,75 mmol) BF₃ · OEt₂ versetzt, 10 Min. kräftig gerührt, mit 10 ml Wasser verdünnt und in Benzol aufgearbeitet. Die Säulenchromatographie¹⁶) an SiO₂ in Hexan/Cyclohexan/Äther 5:1:1 ergab 50% **23** und 15% **24**. (E)-2,3,3-Trimethyl-2-(3'-methyl-1',3'-butadien-1'-yl)-6-methylidencyclohexanon (23): GC. isoliert. - UV. (0,094 mg in 10 ml): 227 (20200). UV. (0,388 mg in 2 ml): 304 (450). - IR.: 3085w, 3020w S, 2980s, 2965s S, 2940s, 2865m, 1705s, 1635m, 1605w, 1470m, 1450s, 1435m, 1370m, 1365m, 1350w, 1310w, 1290w, 1275w S, 1215w, 1165w, 1130w, 1090w, 1035m, 1025m S, 995m, 985m, 975s, 950w, 935w, 900s S, 890s, 855w. - ¹H-NMR: 1,01, 1,07 (2s, 2 H₃C-C(3)); 1,26 (s, H₃C-C(2)); 1,35-2,0 (m, überlagert durch m bei 1,77, 2 H-C(4)); 1,77 (m, $w_{1/2}$ =2,5, H₃C-C(3')); 2,2-2,85 (m, 2 H-C(5)); 4,8-4,95 (m, 3 H) und 4,95-5,03 (m, 1 H) (H₂C=C(6), 2 H-C(4')); 5,72 (*AB*-System, *J*=16, δ_A = 5,47, δ_B = 5,98, H-C(1'), H-C(2')). - ¹³C-NMR: 18,6, 22,9, 264, 27,1 (4 qa, 4 CH₃); 28,4, 35,8 (2t, C(4), C(5)); 111,3, 1165 (2t, H₂C=C(6), C(4')); 132,2, 133,5 (2d, C(1'), C(2')); 44,5, 57,7 (2s, C(2), C(3)); 141,5, 149,3 (2s, C(3), C(6)); 215,7 (s, C(1)). - MS: (26, M⁺, C₁₅H₂₂O), 203 (12), 175 (22), 147 (20), 145 (12), 134 (19), 133 (47), 132 (16), 121 (20), 120 (25), *119* (100), 107 (21), 106 (15), 105 (70), 93 (29), 91 (44), 86 (76), 79 (20), 77 (28), 69 (16), 55 (17), 43 (20), 41 (37), 39 (16).

C₁₅H₂₂O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,38 H 10,13%

8-Isopropenyl-2, 2, 6-trimethyl-5-methyliden-7-oxabicyclo [4.3.0] non-9-en (24): GC. isoliert. - UV. (0,504 mg in 5 ml): Endabsorption bis 235. - IR.: 3095w S, 3080w, 2985s, 2965s, 2939s, 2920s S, 2865m S, 2850m, 1660m, 1650m S, 1460m S, 1450m, 1440m S, 1390m, 1385m, 1370m S, 1365s, 1305w, 1285w, 1275m, 1260w, 1215w, 1190m, 1155w, 1140s, 1110m, 1080s, 1055m, 1035m, 1010m, 990m, 975m, 950w,

935w, 900s, 890m, 875w S, 845m. - ¹H-NMR.: 1,15, 1,16 (2s, $2 H_3C-C(2)$); 1,40 (s, $H_3C-C(6)$); 1,2-1,8 (m, 2 H-C(3)); 1,55 (m, $w_{1/2} = 3$, $CH_2=C(CH_3)$); 2,0-2,6 (m, 2 H-C(4)); 4,57-4,66 (m, 1 H), 4,66-4,76 (m, 1 H), 4,84-4,92 (m, 1 H), 4,92-5,0 (m, 1 H) und 5,07 (s-artiges m) (H-C(8), H-C(9), CH₂=C(CH₃), H₂C=C(5)). - MS.: 218 (11, M^+ , C₁₅H₂₂O), 204 (16), 203 (100), 175 (26), 161 (11), 119 (14), 105 (14), 95 (24), 91 (15), 77 (11), 69 (26), 43 (14), 41 (21).

C₁₅H₂₂O (218,33) Ber. C 82,51 H 10,16% Gef. C 82,52 H 10,11%

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETHZ (Leitung: D. Manser) ausgeführt. Die Aufnahme der NMR.-Spektren verdanken wir Frl. B. Brandenberg und Herrn K. Hiltbrunner (Leitung des NMR.-Service: Prof. Dr. J. F. M. Oth). Die Massenspektren wurden von Frau L. Golgowski unter der Leitung von Prof. Dr. J. Seibl aufgenommen. Für die tatkräftige Mitarbeit bei der Durchführung der Versuche danken wir Herrn Th. Jenny.

LITERATURVERZEICHNIS

- [1] 116. Mitt.: K. Tsutsumi & H.R. Wolf, Helv. 63, 2370 (1980).
- [2] A. P. Alder, H. R. Wolf & O. Jeger, Helv. 61, 2681 (1978).
- [3] A. P. Alder, H. R. Wolf & O. Jeger, Chimia 32, 464 (1978).
- [4] A. P. Alder, H. R. Wolf & O. Jeger, Helv. 59, 907 (1976).
- [5] B. Frei, W.B. Schweizer, H.R. Wolf & O. Jeger, Recl. Trav. Chim. Pays-Bas 98, 271 (1979).
- [6] J. Ehrenfreund, Y. Gaoni & O. Jeger, Helv. 57, 2704 (1974).
- [7] K. Murato, H.R. Wolf & O. Jeger, Helv. 63, 2212 (1980).
- [8] B. Frei, H.R. Wolf & O. Jeger, Helv. 62, 1645 (1979).
- [9] K.N. Houk, N.G. Roudan, C. Santiago, C.J. Gallo, R.W. Gaudour & G.W. Griffin, J. Am. Chem. Soc. 102, 1504 (1980).
- [10] H. Eichenberger, K. Tsutsumi, G. de Weck & H. R. Wolf, Helv. 63, 1499 (1980).
- [11] K. Murato, H. R. Wolf & O. Jeger, in Vorbereitung.
- [12] A.P. Alder, H.R. Wolf & O. Jeger, Helv. 63, 1833 (1980).
- [13] H. Eichenberger, H.R. Wolf & O. Jeger, Helv. 59, 1253 (1976).
- [14] W.C. Still, M. Kahan & A. Mitra, J. Org. Chem. 43, 2923 (1978).
- [15] B. Frei, G. de Weck, K. Müllen, H. R. Wolf & O. Jeger, Helv. 62, 553 (1979).